

SSC8039HN6

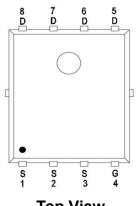
P-Channel Enhanced MOSFET

Features

VDS	VGS	RDSON Typ.	ID
201/	1201/	7mΩ@-10V	644
-30V	±20V	8.5mΩ@-4V5	-64A

Description

The SSC8039HN6 P-Channel enhancement MOSFET. Uses advanced trench technology and design to provide excellent RDSON with low gate charge. This device is suitable for use in DC-DC conversion, power switch and charging circuit. 100% UIS + DVDS Tested.


Applications

- DC/DC conversion
- Power management in portable
- Load/Power Switching for portable device

Ordering Information

Device	Package	Shipping		
SSC8039HN6	PDFN5X6-8L	5000/Reel		

Pin configuration

Top View

PDFN5X6-8L

Marking

(XXYY: Traceability Code)

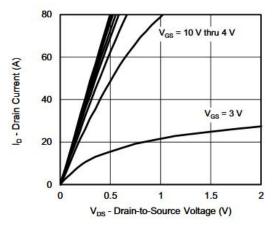
Rev.1.0 www.sscsemi.com

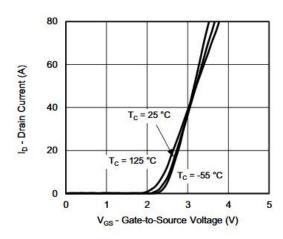
Absolute Maximum Ratings (T_A=25[°]C unless otherwise noted)

Symbol	Parameter		Ratings	Unit
V _{DSS}	Drain-to-Source Vol	Drain-to-Source Voltage		V
V _{GSS}	Gate-to-Source Volt	tage	±20	V
	Continuous Drain Current	T _C =25℃	-64	
I _D	Continuous Drain Current	T _C =100℃	-34	Α
	Continuous Dusin Comment 3	T _A =25℃	-18.5	
I _{DSM}	Continuous Drain Current ^a	T _A =70℃	-13	Α
I _{DM}	Pulsed Drain Curre	ent ^b	-120	Α
В	Dower Discipation 6	T _C =25℃	29	\\\\\
P _D	Power Dissipation ^c	T _C =100℃	11.6	W
В	Dower Discinction 8	T _A =25℃	2.4	10/
P _{DSM}	Power Dissipation ^a	T _A =70℃	1.5	W
I _{AS}	Avalanche Current ^b L=0.5mH	Single Pulse	-22.5	Α
Eas	Avalanche Energy ^b L=0.5mH	l Single Pulse	126	mJ
TJ	Operation junction temperature		-55~150	$^{\circ}$
T _{STG}	Storage temperature	range	-55~150	
R _{0JA}	Junction-to-Ambient Thermal	Resistance ^a	52	°C/W
Rejc	Junction-to-Case Thermal	4.3	C/VV	

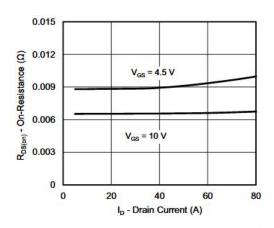
Note:

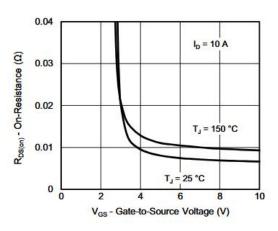
- a. The value of R_{θJA} is measured with the device mounted on 1 in² FR-4 board with 2oz.copper,in a still air environment with T_A=25℃. The value in any given application depends on the user is specific board design. The current rating is based on the t≤10s thermal resistance rating.
- b. Repetitive rating, pulse width limited by junction temperature.
- c. The power dissipation P_D is based on $T_{J(MAX)}$ =150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heat sinking is used.



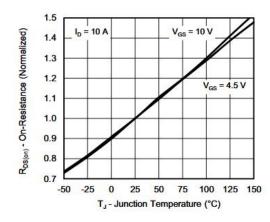

\triangleright Electronics Characteristics (T_A=25°C unless otherwise noted)

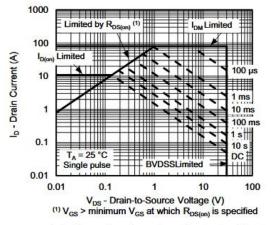
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit	
V _{(BR)DSS}	Drain-Source Breakdown Voltage	VGS=0V, ID=-250uA	-30			V	
V _{GS(th)}	Gate Threshold Voltage	VDS=VGS, ID=-250uA	-1	-1.6	-2	V	
	Drain-Source	VGS=-10V, ID=-20A		7	8.5		
$R_{DS(on)}$	On-Resistance	VGS=-4.5V, ID=-12A		8.5	12	mΩ	
I _{DSS}	Zero Gate Voltage Drain Current	VDS=-24V, VGS=0V			-1	μA	
I _{GSS}	Gate-Source leak	VGS=±20V, VDS=0V			±100	nA	
G _{FS}	Transconductance	VDS=-10V, ID=-5A		38		S	
V _{SD}	Forward Voltage	VGS=0V, IS=-2A		-0.7	-1.3	V	
Ciss	Input Capacitance			4900			
Coss	Output Capacitance	VDS=-15V, VGS=0V,		440		pF	
Crss	Reverse Transfer Capacitance	f=1MHz		330			
$T_{D(ON)}$	Turn-on delay time	V00- 40V DI -450		44			
Tr	Rise time	VGS=-10V, RL=15 Ω VDS=-15V, RG=6 Ω ,		31		200	
$T_{D(OFF)}$	Turn-off delay time	VD315V, RG-012,		188		ns	
Tf	Fall time	ID2A		111			
Q_{G}	Total Gate Charge			66			
Q _{GS}	Gate to Source Charge	VGS=-10V, VDS=-15V ID=-20A		9		nC	
Q_GD	Gate to Drain Charge			15			


➤ Typical Characteristics (T_A=25°C unless otherwise noted)



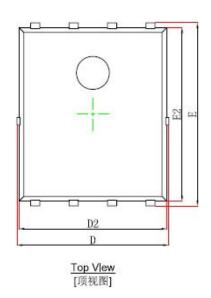
Output Characteristics

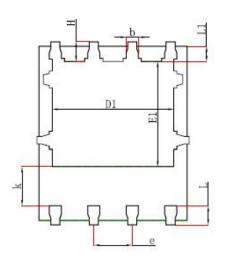

Transfer Characteristics



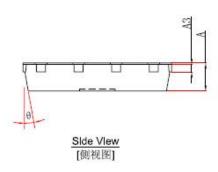
On-Resistance vs. Drain Current and Gate Voltage

On-Resistance vs. Gate-to-Source Voltage




On-Resistance vs. Junction Temperature

Safe Operating Area, Junction-to-Ambient



> Package Information

Bottom Vlew [背视图]

PDNF5X6-8L

Comple el	Dimensions In Millimeters		Dimensions In Inches	
Symbol	Min.	Max.	Min.	Max.
Α	0.900	1.000	0.035	0.039
A3	0.254REF		0.010REF	
D	4.944	5.096	0.195	0.201
E	5.974	6.126	0.235	0.241
D1	3.910	4.110	0.154	0.162
E1	3.375	3.575	0.133	0.141
D2	4.824	4.976	0.190	0.196
E2	5.674	5.826	0.223	0.229
k	1.190	1.390	0.047	0.055
b	0.350	0.450	0.014	0.018
е	1.270TYP		0.050TYP	
L	0.559	0.711	0.022	0.028
L1	0.424	0.576	0.017	0.023
Н	0.574	0.726	0.023	0.029
θ	10°	12°	10°	12°

DISCLAIMER

AFSEMI RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. AFSEMI DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICIENCE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

THE GRAPHS PROVIDED IN THIS DOCUMENT ARE STATISTICAL SUMMARIES BASED ON A LIMITED NUMBER OF SAMPLES AND ARE PROVIDED FOR INFORMATIONAL PURPOSE ONLY. THE PERFORMANCE CHARACTERISTICS LISTED IN THEM ARE NOT TESTED OR GUARANTEED. IN SOME GRAPHS, THE DATA PRESENTED MAY BE OUTSIDE THE SPECIFIED OPERATING RANGE (E.G. OUTSIDE SPECIFIED POWER SUPPLY RANGE) AND THEREFORE OUTSIDE THE WARRANTED RANGE.

OUR PRODUCT SPECIFICATIONS ARE ONLY VALID IF OBTAINED THROUGH THE COMPANY'S OFFICIAL WEBSITE, CRM SYSTEM, OR OUR SALES PERSONNEL CHANNELS. IF CHANGES OR SPECIAL VERSIONS ARE INVOLVED, THEY MUST BE STAMPED WITH A QUALITY SEAL AND MARKED WITH A SPECIAL VERSION NUMBER TO BE VALID.